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Abstract

This study investigated aortic and brachial hemodynamic functioning that may link school
burnout to cardiovascular risk factors. Methodological improvements from previous research
were implemented including (1) statistical control of depressive and anxiety symptoms
(2) resting, stress-induced and cardiac recovery condition comparisons and (3) use of pulse
wave analysis. Forty undergraduate young adult males completed self-report measures of
school burnout, trait anxiety and depressive symptoms. Participants then completed a
protocol consisting of a 10-min seated rest, 5-min baseline (BASE), 3-min cold pressor test
(CPT) and a 3-min recovery period (REC). Indices of brachial and aortic hemodynamics were
obtained by means of pulse wave analysis via applanation tonometry. Controlling for
anxiety and depressive symptoms, planned contrasts identified no differences in cardiovas-
cular parameters at BASE between participants in burnout and non-burnout groups.
However, negative changes in hemodynamic indices occurred in burnout participants at CPT
and REC as evidenced by increased aortic and brachial systolic and diastolic blood
pressures, increased left ventricular work and increased myocardial oxygen consumption.
Findings suggest that school burnout symptoms are associated with cardiac hyperactivity
during conditions of cardiac stress and recovery and therefore may be associated with the
early manifestations of cardiovascular disease. Future studies are suggested to reveal
underlying autonomic mechanisms explaining hemodynamics functioning in individuals with
school burnout symptomatology.
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IntroductionQ1

Burnout is a multidimensional affective response to stress

that has been identified as a risk factor for a host of

psychological, psychosocial and physiological ailments

including cardiovascular diseases (CVDs) (Kahn &

Byosiere, 1992; Melamed et al., 2006; Schaufeli & Buunk,

2003; Shirom, 2003). Although burnout has traditionally been

regarded as a work-related disorder (Halbesleben & Buckley,

2004; Maslach et al., 2001) it has recently been applied to

educational populations (Kiuru et al., 2008; Salmela-Aro

et al., 2009). Within an educational context, school burnout is

characterized by chronic exhaustion from school-related

work, cynicism toward the meaning of school and feelings

of inadequacy toward school related accomplishments

(Salmela-Aro et al., 2009). However, school burnout research

is limited as the potential physiological impact of school

burnout on cardiovascular functioning and risk has yet to

be explored. The current study therefore investigated

cardiovascular functioning associated with school burnout

via pulse wave analysis (PWA).

Research relating (work) burnout to CVD has primarily

focused on two mediating physiological stress systems – the

sympatheticadrenergic–medullary (SAM) axis and the

hypothalamicpituitary–adrenal (HPA) axis – underemphasiz-

ing the imbalance of hemodynamic (i.e. blood circulation)

functioning due largely to inconsistent and equivocal findings

(Danhof-Pont et al., 2011; De Vente et al., 2003; Melamed

et al., 2006; van Doornen et al., 2009). It has been argued that

previous research investigating burnout that does not

adequately account for the influence of related affective

symptomatology (especially depressive and anxiety symp-

toms as suggested by Melamed et al., 2006; Schaufeli &

Buunk, 2003; Shirom, 2009), lacks analysis of cardiovascular

reactivity (CVR) and recovery (as suggested by Manuck,

1994; Rottenberg et al., 2007; Treiber et al., 2003) and is

deficient in the measurement of both peripheral (brachial) and

central (aortic) hemodynamics (as suggested by McEniery

et al., 2008; Roman et al., 2009) may have contributed to

equivocal findings precluding a clear picture of the relation-

ship between burnout, hemodynamics and CVD risk.
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Accordingly, the present study examined hemodynamic

functioning as a potential physiological link between school

burnout and increased CVD risk by (1) controlling for

depressive and anxiety symptoms, (2) evaluating CVR and

recovery comparisons and (3) using PWA via applanation

tonometry to examine aortic hemodynamics. We hypothe-

sized that individuals with high school burnout would display

increased cardiac reactivity (i.e. increased brachial and aortic

blood pressure (BP), wave reflection, left ventricular work

and myocardial oxygen consumption) and impaired cardiac

recovery in response to sympathetic stimulation via a cold

pressor test (CPT) compared to individuals with lower school

burnout scores. In regard to heart rate (HR), we proposed a

specific hypothesis during the recovery phase due to an

expected vagal rebound. Vagal rebound is defined as a

marked increase in parasympathetic activity above resting

levels following an acute stressor (Arai et al., 1989) and is

suggested to provide cardioprotection (Mezzacappa et al.,

2001). We expected vagal rebound to be elicited in partici-

pants with lower school burnout scores but absence in those

with high burnout scores.

Methods

Participants

Forty apparently healthy male adult undergraduates (18–30

years of age; M¼ 21.32, SD¼ 2.63) were qualified for study

inclusion. Females were excluded from the study due to

concerns about hormonal variations influencing pressure

wave morphology (Adkisson et al. 2010). Twelve male

participants were excluded from study participation. To

avoid potential cardiovascular functioning confounds, partici-

pants were excluded from study participation through an

online health screening assessment if they smoked, exercised

regularly as defined as 4120 min per week in the previous

6 months, were hypertensive as defined as BP �140/

90 mmHg, had chronic diseases, or were taking beta blockers,

antidepressants or stimulants. Participants were asked to

abstain from caffeine, alcohol and strenuous physical activity

for at least 24 h prior to testing and were asked not to eat any

food 4 h prior to testing. Participants were recruited from a

university population sample. All participants gave their

written consent prior to study participation as approved by

The Florida State University Institutional Review Board. The

ethnic composition of the sample was 61% Caucasian, 14%

African American, 7% Asian and 18% endorsed either biracial

or non-disclosed ethnicity.

Instruments and measures

Anthropometrics

Height was measured using a stadiometer and body weight was

measured using a Seca scale (Sunbeam Products Inc., Boca

Raton, FL). Body mass index (BMI) was calculated as kg/m2.

Pulse wave analysis

PWA, defined as examination of the characteristics and

functioning of the arterial (central) pulse wave, allows for

accurate assessment of central hemodynamic functioning

(Hashimoto et al., 2007; Nichols & Singh, 2002; Safar et al.,

2008). PWA conducted via applanation tonometry allows for

a non-invasive examination of the intra-arterial aortic pres-

sure wave form (Figure 1).

Applanation tonometry assesses BP and flow by gently

resting a pencil shape device (tonometer) against the skin

above an artery. The aortic BP (central) wave comprises

a forward wave (P1), caused by stroke volume ejection, and a

reflected wave (P2) that returns to the aorta from peripheral

sites. Additional indices measured include augmentation

index (AIx), transit time of the reflected wave (Tr), systolic

pressure time interval (STI), diastolic pressure time

interval (DTI) and subendocardial viability index (SVI). AIx

is defined as the augmented pressure (AP¼ P2� P1)

expressed as a percentage of the aortic pulse pressure

(APP¼ASBP�ADBP). AIx is a marker of pressure wave

reflection pressure and has been associated with high rates of

cardiovascular morbidity and mortality (Mitchell, 2009;

Vlachopoulos et al., 2010) and is able to predict clinical

Figure 1.Q2 Schematic representation of a typical aortic pulse pressure waveform. SBP: systolic blood pressure; DBP: diastolic blood pressure;
AP: augmentation pressure; P1: pressure of the first systolic peak; P2: pressure of the second systolic peak; Tr: transit time of the reflected wave;
ED: systolic ejection duration.
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events independently of peripheral pressures (Vlachopoulos

et al., 2010). Since AP and AIx are influenced by HR they are

typically adjusted at 75 bpm (AP@75, AIx@75; Wilkinson

et al., 2002). Tr indicates the round-trip travel of the forward

wave to the peripheral reflecting sites and back to the aorta.

STI has been shown to be an indicator of left ventricular

work and myocardial oxygen consumption while DTI is an

indicator of coronary perfusion (Bunckberg et al., 1972). SVI

is obtained from the ratio of DTI to STI expressed as a

percentage of subendocardial perfusion to myocardial demand

(Bunckberg et al., 1972).

In this study, PWA assessed vascular function and aortic

hemodynamics using brachial BP and applanation tonometry.

Brachial BP and applanation tonometry were obtained in

duplicates at each time point. Brachial BP was recorded using

an automated oscillometric device (HEM-705CP; Omron

Healthcare, Vernon Hill, IL). Brachial systolic BP (BSBP)

and diastolic BP (BDBP) were used to calibrate radial

waveforms obtained from a 10 s epoch using a high-fidelity

tonometer (SPT-301B; Millar Instruments, Houston, TX).

Brachial mean arterial pressure (MAP) was calculated as

(1/3)SBPþ (2/3)DBP. Aortic BP waveforms and resulting

central pressure indices were derived using a validated

generalized transfer function (SphygmoCor, AtCor Medical,

Sydney, Australia). Only high-quality measurements (480%

operator index) were considered for analysis.

Depression

Depression was measured using the 10-item Center for

Epidemiologic Studies Depression Scale (CES-D; Radloff,

1977; Santor & Coyne, 1997). The CES-D has been widely

used as a stable measure of depressive symptoms in

nonclinical samples. It asks participants to respond to a list

of ways they may have felt or behaved during the previous

week. Sample items include, ‘‘I was bothered by things that

usually don’t bother me,’’ and ‘‘I felt hopeful about the

future,’’ (reverse coded). Responses ranged from 0¼ rarely or

none of the time (less than 1 d) to 3¼most or all of the time

(5–7 d). Responses were summed into one overall score, with

a possible range of 0–30. Reliability for the sample was

�¼ 0.67.

Anxiety

Anxiety was measured using the 20-item State-Trait Anxiety

Inventory (STAI; Spielberger et al., 1970). Participants were

asked to respond to anxiety items such as ‘‘upset,’’ ‘‘calm,’’

‘‘secure,’’ ‘‘at ease’’ and ‘‘nervous.’’ Responses were scored

on a 4-point Likert scale (1¼ not at all to 4¼ very much so).

Half of the items were reverse coded so that higher scores

indicated greater anxiety. Items were then summed to create a

composite Anxiety score with a possible range of 20–80.

Reliability for the sample was �¼ 0.91.

School burnout

School burnout was measured using the School Burnout

Inventory (SBI: Salmela-Aro et al., 2009). The SBI consists of

nine items measuring three first-order factors of school

burnout: (a) exhaustion at school (four items), (b) cynicism

toward the meaning of school (three items) and (c) sense of

inadequacy at school (two items). Summed scores from

the first-order factors comprise a second-order overall

school burnout score. All the items were rated on a 6-point

Likert-type scale ranging from 1 (completely disagree) to 6

(strongly agree). Higher composite scores indicate higher

burnout. As validated diagnostic scores have not been

established for SBI scores, consistent with the strategy of

the Danhof-Pont et al. (2011) meta-analysis of comparing

cohorts of burnout based on burnout severity scores, we

differentiate individuals with higher burnout (B) from non-

burnout (NB) in our sample on the overall SBI score through

the use of a median split (Mdn¼ 18). Reliability for the

sample was �¼ 0.94.

Procedure

Participants were first introduced to the laboratory setting and

familiarized with the study procedures. Body measurements

(i.e. height, weight, arm and waist circumference) were taken

followed by participants completing a health questionnaire

that included a health history form and a questionnaire

containing the school burnout, depression and anxiety scales.

All data collection were conducted in the afternoon in a quiet,

dimly lit, temperature-controlled room (23� 1 �C) at the same

time of the day (�2 h) in order to minimize potential diurnal

variations in CVR (Muller, 1999). Before the CPT, partici-

pants were seated and given a 10-min rest before any baseline

(BASE) measurements were performed. Within 5 min after

the rest period, BASE measurements for peripheral brachial

BP and applanation tonometry of the radial artery for central

aortic hemodynamics were taken. Immediately following the

BASE measurements, participants completed the CPT by

submerging their hand in cold water (4 �C) for 3 min in order

to evoke SNS stimulation. During the CPT a research assistant

observed participant completion of the 3 min CPT. All

participants were able to keep their hand in the water

throughout the entire task. BP and applanation tonometry

were obtained between 2 and 3 min of the CPT. After the

3 min CPT, participants were told to remove their hand from

the cold water which started a 3-min recovery period (REC).

During REC, BP measurements followed directly by hemo-

dynamics measurements were taken within 2–3 min from the

start of the recovery period. All REC measurements ended

after 3 min.

Statistical analysis

Differences in health characteristics between burnout groups

were analyzed with independent samples t tests. Multinomial

logistic regression evaluated ethnicity and year in school

associations with school burnout categorization. Pearson

correlations evaluated measurement scale (SBI, CES-D,

STAI) associations. Planned univariate contrasts were con-

ducted to compare the hypothesized a priori hemodynamic

differences between the B and NB groups. Planned univariate

contrasts were conducted to compare the hypothesized a

priori hemodynamic differences between the B and NB

groups. The planned contrasts used the adjusted marginal

means of hemodynamic indices that were created after
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controlling for depression and anxiety scores.1 All statistical

analyses were performed using IBM SPSS version 20.

Results

Table 1 shows the health demographic characteristics of the B

and NB groups. Independent samples t tests indicated no

statistically significant differences in health characteristics

(height, weight, BMI, age) between classified burnout

participants. Multinomial logistic regression analyses indi-

cated that neither ethnicity, �2(4)¼ 6.24, p¼ 0.18, nor year in

school, �2(3)¼ 7.11, p¼ 0.07, were associated with school

burnout categorization. Pearson correlations were calculated

between SBI (M¼ 20.19, SD¼ 9.80), STAI (M¼ 31.05,

SD¼ 8.19) and the CES-D (M¼ 9.17, SD¼ 2.95).

Significant correlations (p50.01, one-tailed) between the

SBI and the STAI (r¼ 0.38) and the CES-D (r¼ 0.45) support

the need to statistically control for anxiety and depressive

symptom influences on SBI scores.

Table 2 displays the means and standard deviations of the

hemodynamic responses between the B and NB groups at

BASE, CPT and REC. Table 3 presents the contrast analyses.

At BASE, contrasts indicated no significant differences on

any of the cardiovascular indices between the burnout groups

(see contrast 1).

As a manipulation check of the CPT procedure increasing

SNS stimulation, contrasts were conducted within the B and

NB groups comparing their BASE to CPT cardiovascular

values. Within both burnout groups all cardiovascular values

were significantly different from BASE with increases in HR,

BSBP, BDBP, BMAP, ASBP, ADBP, AMAP, AP@75,

AIx@75, P1, P2, STI, DTI and decreases in Tr and SVI

(see contrasts 2 and 3).

Contrasts testing predicted differences between burnout

groups at CPT indicated that BSBP, BDBP, BMAP, ASBP,

ADBP, AMAP, AP@75, Alx@75, P1, P2, STI and DTI were

significantly higher for B than NB while Tr was significantly

lower for B than NB (see contrast 4). HR and SVI did not

significantly differ between burnout groups at CPT. To

examine cardiovascular recovery predictions, contrasts were

conducted within B and NB groups comparing BASE to REC

cardiovascular values (see contrast 5 and 6). For B, all

cardiovascular values at REC except for SVI and HR were

still significantly higher (lower for Tr) than at BASE. For NB

no cardiovascular values at REC were significantly different

from BASE, except for HR which, as predicted, was

significantly lower. Figure 2 displays the mean changes in

aortic (panel A and B) and brachial (panel C and D) BP from

BASE to CPT and REC between the B and NB groups.

Figure 3 displays the mean HR changes from BASE to CPT

and REC between the burnout groups. Figure 4 displays mean

hemodynamic changes of AIx@75, STI, DTI and SVI from

BASE to CPT and from BASE to REC between the B and

NB groups.

Discussion

This study examined cardiovascular functioning that may

underlie school burnout. Results supported our predictions,

demonstrating the novel finding that during exposure to a

stressor and in the immediate recovery period, higher levels

of school burnout were associated with greater CVR in aortic

hemodynamic functioning. These findings identify novel

cardiac biomarkers related to school burnout and support

the conclusion that burnout may be predictive of an increased

risk of future CVD. This study provides the initial investiga-

tion into physiological functioning underlying school burnout

and attempts to provide a methodological framework for

burnout research applicable to additional environments (i.e.

workplace burnout).

Methodological suggestions from related literatures

(e.g. control of related affective symptomatology, utilization

of CVR and recovery phases, and measurement of aortic

hemodynamics) were implemented in this study in an

attempt to improve the clarity of the potential relationship

between burnout, hemodynamics and CVD. First, as affective

disorders may have overlapping symptomatology, investiga-

tors suggest the need to control for depressive and anxiety

symptoms in designs focusing on burnout measurement

(Melamed et al., 2006; Schaufeli & Buunk, 2003; Shirom,

2009). Second, only through the exposure to and then

recovery from a stressful stimulus may some individuals be

identified as at risk of deteriorated cardiovascular function-

ing. In fact CVR, defined as the magnitude or pattern of

hemodynamic responses to stressors, has been identified as

serving as both a marker and a mechanism in the pathogenesis

of CVD (Manuck, 1994; Treiber et al., 2003). In a review of

studies investigating CVR and the development of subclinical

and clinical CVD states, BP responses to the cold pressor task

(CPT) were noted as predictive of future hypertension in large

longitudinal epidemiological studies in initially normotensive

samples (Treiber et al., 2003). Also, the degree of cardiovas-

cular and autonomic recovery from a stressful state to

homeostasis is also diagnostic of cardiac functioning (Cole

et al., 1999). The faster an individual can recover from a

stressor and return to a state of homeostasis is predictive of

1Instead of traditional omnibus tests, planned comparisons were used to
more precisely test the specific, a priori hypotheses we proposed. As
argued by O’Keefe (2003a,b) and Tutzauer (2003), one of the benefits of
testing specific a priori hypotheses that are grounded in theory is the
latitude of selecting alpha criteria and statistical analyses that appropri-
ately limit the threats to type II error. Therefore, statistical significance
for the proposed contrasts where set at p50.05 with no additional alpha
corrections. When traditional omnibus 2� 3 analyses of covariance
(ANCOVA) with repeated measures were conducted across trials (BASE
versus CPT versus REC) and condition (B versus NB) on cardiovascular
variables while controlling for depression and anxiety symptomatology,
significant ANCOVA interactions were identified (p50.05) between
burnout groups for all cardiovascular indices and simple effect follow-up
tests produced near identical conclusions as the planned contrast
analyses.

Table 1. Health characteristics.

Variable B (n¼ 20) NB (n¼ 20)

Height (cm) 176.30� 8.52 177.61� 6.14
Weight (kg) 81.50� 15.21 80.34� 12.51
BMI (kg/m2) 25.58� 4.00 25.31� 4.07
Age (years) 21.20� 2.46 21.43� 2.79

Data are M� SD. B: burnout group; NB: non-burnout group; BMI: body
mass index. Independent samples t tests examined health characteristic
differences.

4 R. W. May et al. Stress, Early Online: 1–9
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positive physical and mental health outcomes (Rottenberg

et al., 2007). Therefore, measuring cardiac function during

and after an acute stressor, slight cardiac anomalies undetect-

able at baseline may then be identified.

Third, although the use of brachial cuff BP measurement is

a well-accepted method intended to identify individuals at

increased cardiovascular risk, this method may underestimate

hemodynamic anomalies. Research has demonstrated that

central pressure measurements can predict cardiovascular

outcomes such as carotid hypertrophy, extent of atheroscler-

osis and incident cardiovascular events more accurately than

brachial pressure measurements (Roman et al., 2009).

Importantly, central pressure cannot be reliably inferred

from peripheral pressure measurements (McEniery et al.,

2008). Plus specific indices predictive of deteriorated cardiac

function (i.e. increases in wave reflection, left ventricular

work and myocardial oxygen consumption) can only be

derived from central pressure assessment (Hashimoto et al.,

2007; O’Rourke & Adji, 2005; Manisty et al., 2010; Safar

et al., 2008; Vlachopoulos et al., 2010).

By comparing cardiovascular functioning between base-

line, stress and recovery conditions, we were able to

demonstrate that even though individuals varying in burnout

scores during a restful condition appear equally healthy, under

stress and in the direct aftermath of a stressor they are not.

Use of PWA identified detrimental changes in aortic

Table 3. Contrasts analyses of hemodynamic values.

Contrast 1 Contrast 2 Contrast 3 Contrast 4 Contrast 5 Contrast 6

BASE BASE vs. CPT BASE vs. CPT CPT BASE vs. REC BASE vs. REC

B vs. NB B NB B vs. NB B NB

Variable
Contrast

F
Partial
�2

Contrast
F

Partial
�2

Contrast
F

Partial
�2

Contrast
F

Partial
�2

Contrast
F

Partial
�2

Contrast
F

Partial
�2

HR (bpm) 0.16 0.005 39.95*** 0.678 4.96* 0.226 1.13 0.032 0.45 0.023 6.39* 0.299
BSBP (mmHg) 0.63 0.018 106.17*** 0.848 66.41*** 0.796 4.20* 0.110 18.44*** 0.493 1.10 0.068
BDBP (mmHg) 1.03 0.029 599.00*** 0.969 339.67*** 0.952 10.50** 0.236 21.05*** 0.526 2.65 0.150
BMAP (mmHg) 0.24 0.007 161.50*** 0.895 71.97*** 0.809 8.90** 0.207 22.37*** 0.541 0.14 0.009
ASBP (mmHg) 0.12 0.004 94.28*** 0.832 52.21*** 0.754 6.47* 0.160 26.83*** 0.585 0.11 0.007
ADBP (mmHg) 1.31 0.037 196.97*** 0.912 57.61*** 0.772 10.74** 0.240 24.70*** 0.565 0.74 0.047
AMAP (mmHg) 0.53 0.015 149.60*** 0.877 64.69*** 0.792 9.89** 0.225 25.67*** 0.575 0.26 0.017
AP@75 (%) 0.38 0.011 28.00*** 0.596 25.67*** 0.602 5.18* 0.117 35.81*** 0.653 3.37 0.183
AIx@75 (%) 0.68 0.020 50.61*** 0.727 30.52*** 0.642 5.25* 0.134 40.56*** 0.681 2.50 0.143
P1 (mmHg) 0.01 0.000 151.76*** 0.889 74.25*** 0.814 7.33* 0.177 22.38*** 0.541 0.37 0.024
P2 (mmHg) 0.11 0.003 91.81*** 0.829 58.11*** 0.774 6.47* 0.160 26.58*** 0.583 0.21 0.014
Tr (ms) 1.09 0.031 10.21** 0.359 4.38* 0.205 4.49* 0.117 5.53** 0.226 1.48 0.243
STI (mmHg/s.min�1) 0.14 0.004 117.03*** 0.860 70.77*** 0.806 5.45* 0.138 49.19*** 0.721 0.92 0.058
DTI (mmHg/s.min�1) 0.25 0.007 96.85*** 0.836 50.15*** 0.747 7.88** 0.188 13.21*** 0.410 0.00 0.000
SVI (%) 0.09 0.003 29.44*** 0.608 20.33*** 0.545 0.03 0.001 0.10 0.005 0.07 0.005

df¼ (1, 38). B: burnout group; NB: non-burnout group; BASE: baseline; CPT: cold pressor test; REC: recovery. Univariate contrasts examined adjusted
marginal means.

*p50.05, **p50.01, ***p50.001.

Table 2. Hemodynamic responses to cold pressor test (4 �C) between B and NB groups.

B NB

Variable BASE CPT REC BASE CPT REC

HR (bpm) 62.70� 7.66 67.90� 8.49 62.00� 10.66 61.40� 11.66 64.75� 9.23 58.25� 9.09
BSBP (mmHg) 112.60� 8.78 143.70� 17.41 121.10� 14.51 114.63� 5.82 133.25� 11.82 116.63� 6.17
BDBP (mmHg) 70.50� 9.17 94.60� 13.67 76.30� 9.73 67.75� 6.40 81.88� 8.62 66.25� 6.57
BMAP (mmHg) 84.53� 8.38 110.97� 14.26 91.23� 10.29 83.38� 4.94 99.00� 8.18 83.04� 4.42
ASBP (mmHg) 96.50� 8.42 130.60� 20.02 105.80� 12.23 97.31� 4.16 116.50� 10.55 97.75� 4.25
ADBP (mmHg) 71.60� 9.28 95.90� 13.65 77.20� 9.83 68.48� 6.46 83.00� 8.72 67.13� 6.74
AMAP (mmHg) 79.90� 8.70 107.47� 15.13 86.73� 9.32 78.09� 5.33 94.17� 8.40 77.33� 55.19
AP@75 (%) 1.40� 1.83 5.60� 5.28 0.70� 1.53 0.90� 3.02 2.50� 1.46 1.38� 2.36
AIx@75 (%) �5.10� 6.50 14.60� 11.33 1.70� 5.43 �2.79� 10.26 7.38� 6.13 �4.50� 8.12
P1 (mmHg) 95.70� 8.73 123.50� 14.98 102.70� 11.64 95.50� 4.50 112.13� 8.46 96.25� 3.17
P2 (mmHg) 95.75� 8.12 130.60� 20.02 105.60� 12.30 96.50� 3.96 116.50� 10.55 97.13� 4.66
Tr (ms) 152.20� 14.97 139.40� 9.45 144.30� 6.81 147.88� 7.92 145.13� 5.83 151.25� 10.92
STI (mmHg/s.min�1) 1557.80� 227.59 2301.90� 478.79 1709.50� 290.10 1529.63� 222.25 1998.25� 224.44 1500.00� 151.01
DTI (mmHg/s.min�1) 3418.90� 328.31 4364.80� 550.34 3703.90� 432.90 3365.84� 296.40 3898.13� 416.40 3364.38� 253.97
SVI (%) 222.20� 24.98 195.00� 33.03 221.00� 35.97 225.63� 40.03 196.88� 26.33 226.88� 28.67

Data are mean� SD. B: burnout group; NB: non-burnout group; BASE: baseline; CPT: cold pressor test; REC: recovery; HR: heart rate; BSBP:
brachial systolic blood pressure; BDBP: brachial diastolic blood pressure; BMAP: brachial mean arterial pressure; ASBP: aortic systolic blood
pressure; ADBP: aortic diastolic blood pressure; AMAP: aortic mean arterial pressure; AP@75: augmentation pressure adjusted at 75 bpm; AIx @75:
augmentation index adjusted at 75 bpm; P1: first systolic peak pressure; P2: second systolic peak pressure; Tr: reflection time; STI: systolic time
interval; DTI: diastolic time interval; SVI: subendocardial viability index.
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hemodynamic indices in individuals with higher burnout

scores while performing the CPT and while in cardiac

recovery. This finding needs to be viewed in light of the fact

that ASBP is more influenced by P2 whereas BSBP is more

dependent upon P1 (Nichols, 2005). Thus, changes in P2 after

administration of laboratory stressors may reveal cardiovas-

cular anomalies that are not detected using brachial BP cuffs.

Our findings are in accordance to those of Casey et al. (2008)

that reported CPT evoked increases in peripheral BP and

central BP in healthy young adults however the increase

in aortic BP during the CPT was higher (�9%) than the

increase in brachial BP suggesting that aortic BP is a more

sensitive marker of cardiovascular function than brachial BP.

Furthermore, we found greater increases in brachial and aortic

BP (Figure 2), wave reflection (AIx in Figure 4a), left

ventricular work and myocardial oxygen consumption (STI in

Figure 4b) although preserved coronary perfusion (DTI in

Figure 4c). As the aforementioned factors are more accurate

predictors of cardiovascular health these results suggest that

school burnout is associated with increased cardiovascular

risk, which may eventually lead to cardiovascular complica-

tions such as hypertension, myocardial infarction and stroke

(Hashimoto et al., 2007). A novel finding and one worth

emphasizing is that we observed these hemodynamic changes

during a period of sympathetic nervous system (SNS)

stimulation but not while subjects were at rest adding to the

notion that cardiovascular anomalies may be undetected at

rest (Manuck, 1994; Rottenberg et al., 2007; Treiber et al.,

2003). Additionally, statistical analyses that controlled for

anxiety and depressive symptoms revealed that burnout

symptomatology uniquely accounts for differences in hemo-

dynamic functioning.

A few specific study findings however do need further

explanation. First, our analyses indicated that during the CPT,

both STI and DTI were significantly higher in the burnout

group. Since STI (ventricular work) increased with a concur-

rent increase in DTI (coronary perfusion) this suggests that

burnout may not necessarily attenuate coronary blood flow

supply (SVI, see Figure 4d) during sympathetic stimulation.

Second, analyses indicate HR did not significantly differ

between the burnout groups. However, while not statistically

significant, the differences in means were in the predicted

directions with HR being higher in the burnout group.

Interestingly, the HR response during the post stress recovery

period revealed altered cardiovagal modulation as shown by

the lack of vagal rebound in the burnout group. Importantly,

Figure 2. Mean peripheral and central blood pressure changes from baseline to cold pressor test (CPT) and to recovery period (REC) between burnout
(B) and non-burnout (NB) groups. Data are mean difference changes and 95% CI. (a) ASBP: aortic systolic blood pressure; (b) ADBP: aortic diastolic
blood pressure; (c) BSBP: brachial systolic blood pressure; (d) BDBP: brachial diastolic blood pressure. ***p50.001 change from baseline. Univariate
contrasts examined adjusted marginal means.

Figure 3. Mean heart rate (HR) changes from baseline to cold pressor
test (CPT) and to recovery period (REC) between burnout (B) and non-
burnout (NB) groups. Data are mean difference changes with 95% CI.
***p50.001, *p50.05 change from baseline. Univariate contrasts
examined adjusted marginal means.
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Mezzacappa et al. (2001) demonstrated that impaired cardiac

autonomic modulation, specifically lack of vagal rebound,

occurs in populations at increased cardiovascular risk such as

individuals with hypertension. Accordingly, lack of vagal

rebound may be an additional factor linking school burnout to

increased CVD risk. However, analysis of cardiac autonomic

modulation using HR variability measures is needed to

confirm this finding.

The potential mechanisms that may explain increased

cardiac reactivity during sympathetic stimulation (CPT) may

also be associated with impaired cardiovascular autonomic

modulation. As previous research has shown associations

between work-related burnout, increased SNS activity and

plasma cortisol concentrations (De Vente et al., 2003), the

hyperactive CPT cardiovascular responses in the burnout

group could be driven by increased adrenergic stimulation

owing to altered plasma catecholamines concentration which

may ultimately increase smooth muscle vascular tone. Since

P2 is influenced by peripheral vascular tone (Munir et al.,

2008) and was more affected than the other factors

contributing to AIx (e.g. HR), our results suggest that the

muscular arteries are hyper responsive in individuals with

relatively higher burnout symptomatology. It is worth noting

that sympathetic hyperactivity and/or attenuated vagal

response during the recovery period may have contributed

to the higher levels of ventricular work and AIx in burnout

individuals.

Important study limitations are also necessary to note as

factors that need to be addressed in future research. First, as

this study only included men, additional studies are necessary

to determine if these findings are generalizable to females.

Second, only global SBI scores were examined; leaving

SBI subscale associations with hemodynamic functioning

unexamined and of potential future consideration. As this was

the first study to examine cardiac biomarkers using the SBI,

we were primarily interested in understanding if the over-

arching concept of school burnout was related to cardiac

function; thus leading us to focus our analyses on the

composite SBI score. Furthermore, no established clinical

diagnostic cutoff points have been established for the SBI.

This opens the possibility that what may actually have been

examined were subclinical levels of school burnout. However,

even assuming subclinical burnout levels, individuals with

lower burnout scores still had better cardiac functioning than

individuals with higher subclinical burnout scores while

under cardiac stress and recovery. Finally, although the HR

response pattern of NB individuals was consistent with the

elicitation of vagal rebound, more comprehensive HR vari-

ability and cardiac autonomic modulation measurements need

to be taken in future studies to confirm this finding.

An interesting future direction to this research may be the

measurement of vasoactive substances that could help explain

the mechanisms responsible for the hemodynamic changes

during the CPT. It could be that burnout negatively impacts

endothelial cell functioning and vasodilator capacity, but this

assumption warrants further investigation. The instrumenta-

tion used in this study was not able to fully identify the

mechanisms that are determining the cardiac functioning

differences found between the burnout groups. Instead, what

this study did accomplish was the demonstration of observ-

able cardiovascular differences during sympathetic stimula-

tion and recovery between burnout groups. It is possible that

burnout individuals have higher serum catecholamine con-

centrations which lead to increased vasoconstriction, which is

a potential factor that future research should examine (Light

et al., 1998).

Figure 4. Mean hemodynamic changes from baseline to cold pressor test (CPT) and to recovery period (REC) between burnout (B) and non-burnout
(NB) groups. Data are mean difference changes and 95% CI. (a) AIx @75: augmentation index adjusted at 75 bpm; STI: systolic time interval; DTI:
diastolic time interval; SVI: subendocardial viability index. ***p50.001 change from baseline. Univariate contrasts examined adjusted marginal
means.
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In conclusion, the important takeaway message from this

study is that our results demonstrate that school burnout is

associated with increased cardiovascular responses during

sympathetic stimulation. This is important as early manifest-

ations of CVDs, such as hypertension, are characterized by

increased SNS activity (Goldstein, 1983; Treiber et al., 2003).

Increased cardiac reactivity is related to increased SNS

activity as well as the future development of cardiovascular

complications (Matthews et al., 2004; Treiber et al., 2003). In

other words, an increase in school burnout is related to

hyperactive responses to cardiac stress that may be related to

an increase in SNS activity. Additionally, this study has

identified new markers of cardiovascular functioning (such as

AIx) that may help identify individuals at increased risk of

developing CVD. These findings have important social and

clinical implications for the evaluation of school burnout

symptoms as they may be associated with the early

manifestations of CVD, even in seemingly young healthy

men. However, in order to more fully determine the extent

of the deleterious relationship between school burnout

and cardiovascular functioning, comprehensive prospective

studies are needed.
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